If a polynomial has four terms, you may be able to factor
by grouping. factor out the GCF of the first two terms and the GCF of the
second two terms. If the expressions in parentheses match, you can factor by
grouping:
ac + ad + bc + bd
a(c + d) + b(c + d)
(a + b)(c + d)
Example 1
8z3 + 7z2
– 16z – 14
z2(8z + 7) – 2(8z + 7) Factor by grouping
(z2 – 2)(8z + 7)
Apply the distributive property
ตัวอย่างที่ 1 จงแยกตัวประกอบ ของ m(n+3)+5(n+3)
วิธีทำ m(n+3)+5(n+3) =(m+5)(n+3)
ดังนั้น
m(n+3)+5(n+3) =(m+5)(n+3)
........................................................................................................................................
ตัวอย่างที่ 2 จงแยกตัวประกอบ ของ ax+by+bx+ay
วิธีทำ ax+by+bx+ay =(ax+ay)+(bx+by)
=(x+y)a+(x+y)b
=(a+b)
(x+y)
ดังนั้น ax+by+bx+ay
=(a+b)(x+y)
........................................................................................................................................
ตัวอย่างที่ 3 จงแยกตัวประกอบ ของ ab2-cb2-6a+6c
วิธีทำ ab2-cb2-6a+6c =(ab2-cb2)+(-6a+6c)
=(a-c)b2+(-a+c)6
=(a-c)b2+(a-c)(-6)
=(a-c)(b2-6)
ดังนั้น ax+by+bx+ay
=(a-c)(b2-6)
..........................................................................................................................................
ตัวอย่างที่ 4 จงแยกตัวประกอบ ของ x3-x3z+y2z-y2
วิธีทำ x3-x3z+y2z-y2
=(x3-x3z)+(y2z-y2)
=(1-z)x3+(z-1)y2 =(-z+1)x3+(z-1)y2
=(z-1)(-x3)+(z-1)y2
=(z-1)(-x3+y2)
ดังนั้น ax+by+bx+ay
=(z-1)(-x3+y2)
..........................................................................................................................................
เฉลยแบบฝึกหัด
1.1 ข
จงแยกตัวประกอบของพหุนามต่อไปนี้(โดยการจัดกลุ่มดึงตัวร่วม)
1.m(n+3)+5(n+3)
=(n+3)(m+5)
........................................................................................................................................
2.(x+y)z-(x+y)
=
(x+y)(z-1)
........................................................................................................................................
3.4t(a+b)-s(a+b)
=(a+b)(4t-s)
........................................................................................................................................
4.(4y2+3)y+6(4y2+3)
=(4y2+3)(y+6)
........................................................................................................................................
5.a(b-3c)+x(b-3c)
=(b-3c)(a+x)
.......................................................................................................................................
6.ax+by+bx+ay
=(ax+bx)+(ay+by)
=(a+b)(x+y)
.......................................................................................................................................
7.5a-10x+ab-2bx
=(5a-10x)+(ab-2bx)
=(a-2x)(5+b)
.......................................................................................................................................
8.na+3b+nb+3a
=(na+nb)+(3a+3b)
=(a+b)(n+3)
.......................................................................................................................................
9.xy-st-xt-sy
=(xy+sy)-(xt+st)
=(x+s)(y-t)
.......................................................................................................................................
10.n2m+n2p-8m-8p
=(n2m-8m)+(n2p-8p)
=(m+p)(n2-8)
.......................................................................................................................................
11.ab2-cb2-6a+6c
=(ab2-cb2)-(6a-6c)
=(a-c)(b2-6)
.......................................................................................................................................
12.2x3-x+14x2-7
=(2x3-x)+(14x2-7)
=(2x2-1)(x+7)
.......................................................................................................................................
13.a2-2b-5a3+10ab
=(a2-2b)-(5a3-10ab)
=(a2-2b)(1-5a)
.......................................................................................................................................
14.x3-x3z+y2z-y2
=(x3-x3z)-(y2-y2z)
=(1-z)(x3-y2)
........................................................................................................................................